Modelling dynamic web data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Dynamic Web Data

We introduce the Xdπ calculus, a peer-to-peer model for reasoning about dynamic web data. Web data is not just stored statically. Rather it is referenced indirectly, for example using hyperlinks, service calls, or scripts for dynamically accessing data, which require the complex coordination of data and processes between sites. The Xdπ calculus models this coordination, by integrating the XML d...

متن کامل

Disseminating Dynamic Web Data

An important issue in the dissemination of time-varying web data such as sports scores and stock prices is the maintenance of temporal coherency. In the case of servers adhering to the HTTP protocol, clients need to frequently pull the data based on the dynamics of the data and a user’s coherency requirements. In contrast, servers that possess push capability maintain state information pertaini...

متن کامل

Modelling Dynamic Personalization in Web Applications

Conceptual Modelling approaches for the web need extensions to specify dynamic personalization properties in order to design more powerful web applications. Current approaches provide techniques to support dynamic personalization, usually focused on implementation details. This article presents an extension of the OO-H conceptual modelling approach to address the particulars associated with the...

متن کامل

Dynamic Fusion of Web Data

Mashups exemplify a workflow-like approach to dynamically integrate data and services from multiple web sources. Such integration workflows can build on existing services for web search, entity search, database querying, and information extraction and thus complement other data integration approaches. A key challenge is the efficient execution of integration workflows and their query and matchi...

متن کامل

Clustering Dynamic Web Usage Data

Most classification methods are based on the assumption that data conforms to a stationary distribution. The machine learning domain currently suffers from a lack of classification techniques that are able to detect the occurrence of a change in the underlying data distribution. Ignoring possible changes in the underlying concept, also known as concept drift, may degrade the performance of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2005

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2005.06.006